20 research outputs found

    DREAM: Efficient Dataset Distillation by Representative Matching

    Full text link
    Dataset distillation aims to synthesize small datasets with little information loss from original large-scale ones for reducing storage and training costs. Recent state-of-the-art methods mainly constrain the sample synthesis process by matching synthetic images and the original ones regarding gradients, embedding distributions, or training trajectories. Although there are various matching objectives, currently the strategy for selecting original images is limited to naive random sampling. We argue that random sampling overlooks the evenness of the selected sample distribution, which may result in noisy or biased matching targets. Besides, the sample diversity is also not constrained by random sampling. These factors together lead to optimization instability in the distilling process and degrade the training efficiency. Accordingly, we propose a novel matching strategy named as \textbf{D}ataset distillation by \textbf{RE}present\textbf{A}tive \textbf{M}atching (DREAM), where only representative original images are selected for matching. DREAM is able to be easily plugged into popular dataset distillation frameworks and reduce the distilling iterations by more than 8 times without performance drop. Given sufficient training time, DREAM further provides significant improvements and achieves state-of-the-art performances.Comment: Efficient matching for dataset distillatio

    Color Prompting for Data-Free Continual Unsupervised Domain Adaptive Person Re-Identification

    Full text link
    Unsupervised domain adaptive person re-identification (Re-ID) methods alleviate the burden of data annotation through generating pseudo supervision messages. However, real-world Re-ID systems, with continuously accumulating data streams, simultaneously demand more robust adaptation and anti-forgetting capabilities. Methods based on image rehearsal addresses the forgetting issue with limited extra storage but carry the risk of privacy leakage. In this work, we propose a Color Prompting (CoP) method for data-free continual unsupervised domain adaptive person Re-ID. Specifically, we employ a light-weighted prompter network to fit the color distribution of the current task together with Re-ID training. Then for the incoming new tasks, the learned color distribution serves as color style transfer guidance to transfer the images into past styles. CoP achieves accurate color style recovery for past tasks with adequate data diversity, leading to superior anti-forgetting effects compared with image rehearsal methods. Moreover, CoP demonstrates strong generalization performance for fast adaptation into new domains, given only a small amount of unlabeled images. Extensive experiments demonstrate that after the continual training pipeline the proposed CoP achieves 6.7% and 8.1% average rank-1 improvements over the replay method on seen and unseen domains, respectively. The source code for this work is publicly available in https://github.com/vimar-gu/ColorPromptReID

    DREAM+: Efficient Dataset Distillation by Bidirectional Representative Matching

    Full text link
    Dataset distillation plays a crucial role in creating compact datasets with similar training performance compared with original large-scale ones. This is essential for addressing the challenges of data storage and training costs. Prevalent methods facilitate knowledge transfer by matching the gradients, embedding distributions, or training trajectories of synthetic images with those of the sampled original images. Although there are various matching objectives, currently the strategy for selecting original images is limited to naive random sampling. We argue that random sampling overlooks the evenness of the selected sample distribution, which may result in noisy or biased matching targets. Besides, the sample diversity is also not constrained by random sampling. Additionally, current methods predominantly focus on single-dimensional matching, where information is not fully utilized. To address these challenges, we propose a novel matching strategy called Dataset Distillation by Bidirectional REpresentAtive Matching (DREAM+), which selects representative original images for bidirectional matching. DREAM+ is applicable to a variety of mainstream dataset distillation frameworks and significantly reduces the number of distillation iterations by more than 15 times without affecting performance. Given sufficient training time, DREAM+ can further improve the performance and achieve state-of-the-art results. We have released the code at github.com/NUS-HPC-AI-Lab/DREAM+.Comment: This is an extension of the ICCV conference versio

    Dataset Quantization

    Full text link
    State-of-the-art deep neural networks are trained with large amounts (millions or even billions) of data. The expensive computation and memory costs make it difficult to train them on limited hardware resources, especially for recent popular large language models (LLM) and computer vision models (CV). Recent popular dataset distillation methods are thus developed, aiming to reduce the number of training samples via synthesizing small-scale datasets via gradient matching. However, as the gradient calculation is coupled with the specific network architecture, the synthesized dataset is biased and performs poorly when used for training unseen architectures. To address these limitations, we present dataset quantization (DQ), a new framework to compress large-scale datasets into small subsets which can be used for training any neural network architectures. Extensive experiments demonstrate that DQ is able to generate condensed small datasets for training unseen network architectures with state-of-the-art compression ratios for lossless model training. To the best of our knowledge, DQ is the first method that can successfully distill large-scale datasets such as ImageNet-1k with a state-of-the-art compression ratio. Notably, with 60% data from ImageNet and 20% data from Alpaca's instruction tuning data, the models can be trained with negligible or no performance drop for both vision tasks (including classification, semantic segmentation, and object detection) as well as language tasks (including instruction tuning tasks such as BBH and DROP).Comment: 9 page

    Dynamic Gradient Reactivation for Backward Compatible Person Re-identification

    Full text link
    We study the backward compatible problem for person re-identification (Re-ID), which aims to constrain the features of an updated new model to be comparable with the existing features from the old model in galleries. Most of the existing works adopt distillation-based methods, which focus on pushing new features to imitate the distribution of the old ones. However, the distillation-based methods are intrinsically sub-optimal since it forces the new feature space to imitate the inferior old feature space. To address this issue, we propose the Ranking-based Backward Compatible Learning (RBCL), which directly optimizes the ranking metric between new features and old features. Different from previous methods, RBCL only pushes the new features to find best-ranking positions in the old feature space instead of strictly alignment, and is in line with the ultimate goal of backward retrieval. However, the sharp sigmoid function used to make the ranking metric differentiable also incurs the gradient vanish issue, therefore stems the ranking refinement during the later period of training. To address this issue, we propose the Dynamic Gradient Reactivation (DGR), which can reactivate the suppressed gradients by adding dynamic computed constant during forward step. To further help targeting the best-ranking positions, we include the Neighbor Context Agents (NCAs) to approximate the entire old feature space during training. Unlike previous works which only test on the in-domain settings, we make the first attempt to introduce the cross-domain settings (including both supervised and unsupervised), which are more meaningful and difficult. The experimental results on all five settings show that the proposed RBCL outperforms previous state-of-the-art methods by large margins under all settings.Comment: Submitted to Pattern Recognition on Dec 06, 2021. Under Revie

    The Effects of Warming-Shifted Plant Phenology on Ecosystem Carbon Exchange Are Regulated by Precipitation in a Semi-Arid Grassland

    Get PDF
    BACKGROUND: The longer growing season under climate warming has served as a crucial mechanism for the enhancement of terrestrial carbon (C) sink over the past decades. A better understanding of this mechanism is critical for projection of changes in C cycling of terrestrial ecosystems. METHODOLOGY/PRINCIPAL FINDINGS: A 4-year field experiment with day and night warming was conducted to examine the responses of plant phenology and their influences on plant coverage and ecosystem C cycling in a temperate steppe in northern China. Greater phenological responses were observed under night than day warming. Both day and night warming prolonged the growing season by advancing phenology of early-blooming species but without changing that of late-blooming species. However, no warming response of vegetation coverage was found for any of the eight species. The variances in species-level coverage and ecosystem C fluxes under different treatments were positively dependent upon the accumulated precipitation within phenological duration but not the length of phenological duration. CONCLUSIONS/SIGNIFICANCE: These plants' phenology is more sensitive to night than day warming, and the warming effects on ecosystem C exchange via shifting plant phenology could be mediated by precipitation patterns in semi-arid grasslands
    corecore